Error detection in confusion network

نویسنده

  • Alexandre Allauzen
چکیده

In this article, error detection for broadcast news transcription system is addressed in a post-processing stage. We investigate a logistic regression model based on features extracted from confusion networks. This model aims to estimate a confidence score for each confusion set and detect errors. Different kind of knowledge sources are explored such as the confusion set solely, statistical language model, and lexical properties. Impact of the different features are assessed and show the importance of those extracted from the confusion network solely. To enrich our modeling with information about the neighborhood, features of adjacent confusion sets are also added to the vector of features. Finally, a distinct processing of confusion sets is also explored depending on the value of their best posterior probability. To be compared with the standard ASR output, our best system yields to a significant improvement of the classification error rate from 17.2% to 12.3%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

Motion detection by a moving observer using Kalman filter and neural network in soccer robot

In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...

متن کامل

Intrusion Detection Based On Artificial Intelligence Technique

Information Technology has become a main and important component to support critical infrastructure services in various sectors of our society. It is being used for sharing information and various operations. Many organizations are used to create complex network systems to give supply to the users. So due to this rapid expansion of computer usage, the security of the system has become very impo...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007